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I  INTRODUCTION 

1* 
In an earlier report,   we described an approximation scheme, called 

the "supcreikonal approximation," for calculating fluctuations produced 

by a specified spectrum of sound-speed fluctuations, in pressure signals 

from a CW source in the ocean.  In that report, our analysis was confined 

to the case where the fluctuations were superimposed on a homogeneous 

Isotropie ocean. 

Here we should like to extend and improve on the earlier version in 

two major ways.  First, we should like to rewrite the results obtained 

in Ref, 1 for the homogeneous case in a much simpler form, in which the 

geometrical optics limit valid for short ranges is transparent, and in 

which the corrections to this limit that became important at large ranges 

are easily visualized.  We should also like to derive formulas for thi 

fluctuations in .he quantities of most immediate experimental interest— 

namely, the mean square phase of the receivid pressure, and the mean 

square logarithm of the amplitude of the received pressure. 

Second, we should like to extend our treatment to the realistic case 

in which the background ocean is not Isotropie and homogeneous, but con- 

tains a sound channel. As we shall see, we can handle thi? situation as 

well, with only a modest increase in complexity, as long as the fluctua- 

tions and ranges are such that separate ray paths are still identifiable. 

Our result will then apply to fluctuations in the signal associated with 

a given ray path. 

Numerical results, and specific models of fluctuation spectra, will 

be treated in a separate report. 

References are listed at the end of the report. 

1 
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II  REVIEW OF SUPERETKONAL APPROXIMATION 

Lot us begin our discussion by neglecting the effects of the sound 

channel.  The problem of sound propagation in the presence of fluctuations 

superimposed on a homogeneous Isotropie background is easier to set up and 

to visualize than when the fluctuations are superimposed on an inhomoge- 

nous background, so it is conceptually advantageous to work out this case 

first.  Then, as we shall see later, when the inhomogeneous background 

representing the sound channel is introduced, the analysis can be carried 

out very much as in the homogeneous case, and the resulting formulas, 

while geometrically more complex, are entirely analogous to those obtained 

in the simpler example. 

Our analysis will be based on the supereikonal approximation, and it 

will be convenient at this point to give a brief review of the results of 

this method.  The problem is to evaluate the pressure p(x) at a point x 

produced by a point source (which, for convenience, we can take to have 

unit strength) located at the origin.  The sound propagation from the 
—► 

source to the point x is through an Isotropie homogeneous ocean, in which 

the sound speed is c, on which is superimposed a fluctuation in sound 

speed 6c(x) that is, of course, very small compared to c.  Mathematically, 

then, the pressure satisfies the wave equation 

2    2 _,  - 
(V  + k )p(x) = V(x)p(x) (2.1) 

where   k = UJ/C   for a   source emitting  sound  of  frequency 0),   and  where 

V(x)  = 2k    6c(x)/c (2.2) 
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The  boundary  condition  associated  with  Eq.    (2,1)   is   that  as x -  0, 

1 
p(x)  - 

4jrx (2.3) 

(we   shall   denote   |x|   simply  by x) 

(We  may  comment   that   in  the  case   of  an   inhomogeneous background, 

in  Eq.    (2.1),   k  is   simply replaced  by  k(x)   = U)/c(x),   where  c(x)   is   the 

sound   speed   in   the   inhomogeneous  background.) 

Equation   (2.1)   may be  case   into  integral   form  through  the  use   of  the 

outgoing-wave Green's  function 

. 

(V     +   k2)Mx  ->),:= ö3(x  -   y)        ; (2.4) 

! 

explicitly,   ;ve  have 

A(x)   =  e 
4Trx (2.5) 

Then we   may  write,   in  place   of Eq.    (2.1), 

p(.-0   = A(x)   + Jd y A(x -  y)V(y)p(y) (2.6) 

Iteration of  this  integral equation generates  the  perturbation  series  for 

p(x),   which   is .nore  convenient  to write   in  Fourier-transformed  form,   as 

follows; 

p(q)   = A(q)   +  A(q) 

+  A(q) 

+ .. . 

/3_ 

—i v(qi 
(2n) 

)A(q   -  q^ (2.7) 

/    3   /     3   V(q
1 

)A(q   -  q   )V(q   )A(q   -  q"   -   q   ) 
i- ti 12 
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where 

A(ci)   = 
2 2 

q     -   k     +   le 
(2.8) 

and,   of  course,   where 

P(q)   =   / d 
-> -> 

3-*    -iq.x      -.< 
x e p(x) (2.9) 

The   supereikonal  approximation  now consists of  neglecting all  momen- 

tum  transfer correlations  in the perturbation  series.     That   is,   we   approx- 

.2       ,2 imate   (q   - q. q,,  -  • • qn)2   -  k2   h   ie   by  q2   -  2q   •    (qi  + q2  +   ,..   +  q^y 

+ q1"  + ci2*  +   ...   + qn
2  - k-   i-  ie,   and  neglect  all  terms of  the  form 

1. •   q     when   i  ^ j.     Note   that  the   first  approximation occurs  in  the 

second-order term  in  V,     Once  this  simplification  is  made,   the  perturba- 

tion  series  can  be  summed exactly,   and  one   obtains   the   result 

->    v: 
p(x)  = i_: 

8* n J 0 

03 
,3/2 

2   x* 
i[Bk +— + ai(ß,x)+ie] 

40 
(2.10) 

whe re 

1(0 

J     (2n) ^o 
(2.11) 

This expression constitutes the supereikonal approximation to the pressure, 

The conditions under which it is valid are 

'V-r ?';;■»,./:,■ 



WJ^aafiare»-»«!!»«»™™,-™™, - "> 
&ils*m*^VMmMmi*m--'' 

*m 

k x »  1 k  L 

• 

and 

k  L \OCJ 
(2.12) 

(In  fact,   the   last  condition may well  be   too  stringent.)     Here  L is   the 

correlation  length of   the   sound-speed  fluctuations-i.o. ,   the  correlation 

function C(x^  y)   s  <V(^)V(y)>   vanishes  when   | x -* y|   k. L. 

It   is worth  noting  that   if,   in Eq.   (2.11),   the 0s(l  -  s)q
2  term  is 

omitted  from  the exponent,  we  obtain 

P( 
i #Vlv(s*)cis)x 

x)  =   e   v 0 / 
4TXX 

■ 

■ 

which  is   the  conventional  WK13,   or eikonal,   or geometrical  optics,   approxi- 

mation   to   the  pressure.     The  primary  virtue   of  the   supereikonal   form, 

Therefore,   is   that  it  contains  as   limiting cases  both   the  conventional 

eikonal   and  and  complete   first-order  perturbation-theory  approximations. 

While  Ecs.   (2.10)   and   (2.11)   do constitute  a   closed-form solution  for 

the  pressure,   the expressions  are   still  a   bit  unwieldy,   and   further  simpli- 

fication  of  them   is  useful.     To  this end,   let  us e^aluate   the   integral   in 

Eq.   (2.10)   by  stationary  phase,   keeping   in  mind   that  x  and  k are  both  large. 

The   stationary  phase  point   is  0   ,   where 

40 
i+H*o*) + M^.*)\B_ ^=0 3/20     =  0 

-■■;. i ■' 



From Eq,   (2,11),   we  may  estimate   that 

H r / Q       \   I k 0 C 
0oä0  r(0'x)l        ^72 * T' 0o 

:• 

B=S0 

hence,   if 

X<kL2^        ' (2.13) 

the   stationary  phase  point   is  accurately given  by   the   solution of  the 

simpler equation 

2 2 2 
k     -  x  /40       =0 

and is located at $Q  =  x/2k.  Thus we find 

2k ^2k j 
ikx  — 

, ,   e     2k 
p(x) = e , , toi ÄS 

4nx (2.14) 
I 

To approximately evaluate the integral I in this expression, we recall 

that the supereikonal approximation should be exact to first order in V. 

This requirement then yields the result 

P(x) = A(x) exp —-  /d3y A(x-y)V(y)A(y)   . (2 15) 

A(x) J 

This expression is known as Rytov's approximation to the pressure.  A 

direct derivation of it may be made by replacing the wave equation (2.1) 

by an equation for log[p(x)/A(x)] and solving this to first order in V.2 

However the justification for the approximation is somewhat obscure in 



this direct derivation; in the approach via the supereikonal technique, 

what is being left out is moi-e clearly visualized. 

In any event, depending on the validity of the criterion (2.13), one 

may use either the supereikonal expression (2.10) or the Ilytov expression 

(2,15) to proceed further.   We shall use (2.15). 

Let us write, then. 

p(x) ~ A(x) e 
X(x) 

(2.16) 

where 

1   /" 3 ,        -.   - :(X) = lO)    I   d x/A(x-x')v(x/)Mx') (2.17) 

For our homogeneous  background  case,   where   the Green's   function A  is 

given  by Eq.   (2.5),   we  have 

X(x)   = -L/A'   _^._    eik(x'+|x-x'|.x) 
4V xMxVl 

') (2.18) 

In concluding this section, and as an aside, let us comment on the 

geometrical optics limit of this expression.  This limit results from an 

evaluation of X(x) by the method of stationary phase.  Provided that the 

Fresnel condition 

x < k L 

All  of  these  statements,   we  remind  the  reader,   are  subject  to  the  range 
constraints under which  the  supereikonal expression was  derived  in the 
first place. 

M^^^^M^^^^^'ä^WA^SWiWUiUiMi«!'«!" 
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is met, the stationary phase path in Eq. (2.18) is the straight line join- 

ing 0 to x, and the stationary phase value of X(x) Is just 

X(x,0,0) 
i   /*X 

(2.19) 

which   is   immediately   recognized  as  the  correct geometrical   optics expres- 

sion  for  the  phase.     The  analogous expression  for the  amplitude   in 

geometrical  optics   is  obtained  by  keeping  the   second-order  transverse 

derivatives   in  V  as well. 

B»; *  .t.   „i 
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III     FLUCTUATIONS   IN A HOMOGENEOUS   ISOTROPIC OCEAN 

The  quantities  that   it will  be  of   interest   to  compute  are   the 

statistical   averages  <X2(x))   and   <|x(x)|2>.      (We   note  that  <X(x)>   = 0, 

of  course.)     These   are   connected to phase  and  amplitude  fluctuations 
2 , 2 2 

<>  )   and   <|log  p/p   |   >   s   <A >   by  the   relations 

(*2)   =   1/2  (<|X|2>   -  Re<X2> 
) 

(3.1) 

and 

<A2> = 1/2 (<|X|2) f Ro(x2)\        . (3.2) 

We will, in addition, obtain the cross correlation Im (x ). 

Insofar as the sound-speed fluctuations, and hence the fluctuations 

in X, are gaussian, the pressure fluctuations are related to the statisti- 

cal averages as well.  We have 

(p) = p e 
0 

I/^X'') 

, 2X     2 2<X > 
<,p > = P0 e 

n  \2\     i i2 i/2<(x+x*)2) 

where  we write 

■ 

1 

_. ikx 
Pn(x)   = A(x)  =  

0 4jtx 

- 

,. ;i    .,_•••*! :'r:_   ■'-.,,,■■ i'; /,>,: 



as the received pressure from the unit point source in the absence of 

fluctuations. 

Eventually, we will also be interesLed in correlations; these will 

involve averages such as (xö^ )X(x9)>, etc., but we shall ignore these 

for now. 
1   2' 

.-> (2.v 
Ix3t us first evaluate <Ix(x)| >.  For convenience, we shall choose 

x to lie along the x axis, so that x = (x,0(0).  From the definition, 

Eq. (2.18), we have 

cixöbn = MMB 2 yj^-yjyjx^y.. 

ikCy^lx-yJ-x)     -ik(y  +|x-y   l-x) 

ih - '2) (3.3) 

where we have introduced the correlation function 

,->        -> 
c(y1 - y2) =  <v(yi)v(y2)> 

We  assume C  to be  independent  of   ^  + y2)/2  for this case  of a h 

geneous background. 

omo- 

It  is  convenient   in Eq.   (3.3)   to  shift   to  relative  and center-of- 

mass coordinates.     We  define 

y = yi  -  y2 

y   + v 
'l       y2 

10 

,;.'"s;;*i%;;;E^ 
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Then, if we assume that C(y) cuts off for values of y ^ L where L « x, 

we may expand in y/Y.  Thus, Eq. (3.3) becomes 

<lx<;,,^fc)7-^/d 3—*  —» 
y C(y) 

exp ik y • [■$.- (x ^ Y)] (3,4) 

Here Y and x - Y stand for unit vectors in the direction of Y and x - Y, 

respectively, and we have written JY ± y/21 ^ Y, |x - Y ± y/2| « |X - Y| 

in the geometrical factors multiplying the exponentials. This approxi- 

mation introduces a negligible error, 

3-> 
The integral over d Y may now be evaluated by stationary phase.  The 

stationary phase path is the straight line joining 0 to x, and the result 

is 

.-> ,2 
<|x(x)| ) =— 7 dy,, 0(^,0) 

4k / 
(3.5) 

where y^ refers to the component of y in the direction parallel to x. 

Introducing the Fourier transform of the correlation function 

3-> -iq.r -> 
d r e    C(r) (3.6) 

permits us to rewrite Eq. (3.5) in the sometimes more convenient form 

<|x6M2> ={^j\fä2lxcioJL) (3.7) 

where "j." refers to the directions perpendicular to x. 

11 
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Next let us turn to {x").  We now hnve, instead of Eq. (3.3),   the 

expression 

(X(x) ) (7-) / ci3y, /d3y.3 —1—=*—1 \4nIJ     v    2  yilx ■ yj 

2 

V"-^ 

ik(y   f-|x-y   |-x)     ik(y +|x-y   |-x) 

c(y1 - y2)     . (3.S) 

We  again  sHiUt   to   the   variables Y and  y,   and  appeal   to  the  vanishing  of 

C(y)   for  v  > L  to  justify expanding  in y/Y and  y/lx - Y|.     We   obtain 

<X(x)   ) 

\     I J Y     x  -  YI 

2ik(Y+ x-Y -x) 
/d3y C(y) 

(2         ->      -   2 
y   - (y • Y)   + 

Y 
y2 - [y •   (x-Y) 

!x-  Yl 

?\ (3. 9) 

As  before,   we  may  evaluate   the   integral   over d Y by   stationary phase. 

This vie Ids 

<X(x)2)   = 
fe)/Xc,s/c,y|l/d^c(y"; 

w 

2      2 
s   (x -  s) 

ik/l 1    \     2 
(3.10) 

wlwre,   again,   "|("   and  "j."  refer to directions parallel and perpendicular 

to x. 

12 
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At this point it is convenient to express C(y  y ) in terms of its 

Fourier transform, as given by Eq, (3,6),  The integral over dy., d2y1 

can then be carried out, and we finally obtain the relatively simple 

expression 

C -,■2. (xar) mm X 0(0,^) 
q,  (s-x)s 

/  ds e  k   x (3,11) 

Equations (3.7) and 3,11) constitute our central results.  They ex- 

press the quantities of Interest as Integrals along unperturbed ray paths 

(in this case straight lines) of the Fourier transform of the correlation 

function C(q)   times rather simple geometrical factors.  As we shall see 

later, entirely parallel expressions obtain in the more difficult case of 

an inhomogeneous background medium. 

The expression for <|x(x)| ), Eq, (3.7), is precisely the same result 

for this quantity obtained by using geometrical optics to compute X(x) it- 

self, and then calculating <|x(x)I2> from this.  [This is easily seen by 

referring back to Eq. (2.19).]  In contrast, Eq. (3.11) is not what one 

obtains for <X(x) ) from geometrical optics.  Geometrical optics for this 

quantity is recovered if one expands the exponential in Eq. (3.11), a 

procedure that evidently is valid only if 

Qx   (s - x)s 
« 1 

Since qx ~ 1/L and s, x - s ~ x, this condition can be more familiarly 

written as 

■ 

: 

13 
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x « k L 

which we recognize as the Freshel condition under which the geometrical 

optics approximation for X(x) itself was valid in the first place. 

Thus, Eq. (3,11) constitutes an improvement over geometrical optics, 

while Ec\. (3.7) coincides with geometrical optics. Conversely, geometri- 

cal optics for <|x| > is valid out to a very large range, while geometri- 

cal optics for <X > is valid only within the range x < k L2. 

It is of interest to study Eq. (3.11) in the limit of very long 

range.  As x - <» , the integral over ds can be approximately evaluated, 

and we find 

(X2("x)> ~ ~!p-   (V + log 4kx - irt/2) (3.12) 

where  Y= 0.577...is Euler's constant.     Thus,   for  small x   satisfying 

the  Fresnel  condition,   we have 

<x26o> -(^JP" x C(0,qjL) ■ 

iq 

X  + 
6k 

2 x    + (3.13) 

and for very large x we have <X2(x)> ~ i log x as given by Eq. (3.12). 

Between these two extremes, of geometrical optics and of very long ranges, 

Eq. (3.11) provides a smooth interpolation. 

Equation (3.7), on the other hand, gives (|x| > for all values of x, 

large and small, and simply says that <|x|2) is proportional to the range 

x everywhere. 

1 

■ 

14 
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IV  RYTOV'S METHOD IN AN INHOMOGENEOUS OCEAN 

Now let us turn to the effects of the sound channel.  That is, we 

must replace the nonfluctuatlng sound speed c in the homogeneous case by 

a (specified) function of position c(x).  In fact, for the ocean, 

c(x) = c(z) is a function of depth only.  A reasonably explicit form for 
3 

c(z) is the relatively simple expression 

c(z) = c  [1 + eCe"11 + Tl - l)] 

where T]  =   (z - z  )/^ B,   where  z     is   the  sound-channel  depth,   and e   and  B 

are  parameters.     We   shall,   however,   write  our  formulas  for a  general  c(x) 

until  the  time  comes  to make explicit numerical  estimates. 

The  wave equation   for  the  pressure,   which  is  our   starting point,   now 

becomes  altered  from Eq.   (2.1)   to  the equation 
■ 

2   2 — -     -,  -. 
[V + k (x)]p(x) = V(x)p(x) (4.1) 

still with the same boundary condition that 

p(x) 
47tX 

as x - 0, corresponding to an Isotropie point source at the origin, where 

now k(x) = cu/c(x). 

Wo must first study the nonfluctuating part of the problem, to evalu- 

ate the Green's function in the presence of the sound channel.  This 

satisfies 

15 
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2   2 ->    _>     , 3 -> ,   , 
[V + k (x)JA(x,y) - 0 (x-y)   . (4.2) 

Note that It is no longei' n   function only of x-y as it was in the homo- 

geneous case.  We shall assume that geometrical optics provides a good 

approximation to the nonfluctuating sound-channel problem.  This means 
-> -^ 

that we can represent A(x,y) as a sum of contributions from each ray join- 

-»    -» 
ing x and y.  To be specific, we may write 

n(x,y) 

A(x,y) -  J^ A.(x,y) (4.3) 
1=1 

-», -> A th 
where n(x,y) is the number of rays and A. is the contribution of the i 

ray.  We have, in particular for rays joining the origin and x. 

/x 
ds k(x.(s))  , i = l...n(x),    (4.4) ■r 

-*-; v th where ds is an element of path length along the ray, x.(s) is the i  ray 
-> 1 

joining 0 to x, and K. is a normalization factor 
" ■ —-      ' "   i 

Now when the fluctuations are turned on, the signals traveling on 

each of the rays joining the origin to the point of observation x are 

subject to small-angle scatterings by the perturbing potential V(x).  The 

signals are thus deflected slightly from the undisturbed rays by each in- 

teraction with V.  The repeated action of V thus produces, on each ray, a 

rfü.t of random walk of the signal away from the original ray.  When we 

average over an ensemble of perturbations V, the disturbed signals will 
I 

fill up a tube surrounding the undisturbed ray.  Provided that these tubes 

16 
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around each of the oz'iginal rays do noi overlap, the recieved pressure 

will be a sum of contributions from each ray tube. 

We may estimate the radius of a ray tube as follows.  The mean free 

path d between interactions of the signal traveling along a given ray with 

the perturbing potential V is of the order of kc/6c.  Hence, over a range 

x the number of scatterings is n = x/d.  The average deflection angle due 

to each scattering is of the order of 1/kL vertically and 1/kL horizon- 

tally, where L and L are the vertical and horizontal correlation lengths J '       V     H 

of the sound-speed fluctuations. Since the process is a random walk, the 

net displacement due to n collisions is proportional to n, and hence the 

vertical and horizontal extents of the tube are, roughly, 

and 

V  \ k kL \ 6 c 

nr i   rr 
^; I       ——-.■■■    I — 

H  \ k kL \ 6c   ' 
H 

Let us assume that the vertical extent of the tubes is small enough 
-» 

so that the tubes remain distinct.  Then the pressure at x is the sum of 

contributions from each tube. 

n(x) 

p(x) P.(x) 
i 

(4.5) 

i=l 

where n(x) is the number of unperturbed rays joining the source to the 

-> -> 
point x.  We shall be Interested in p (x), 

17 
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We note that p.(x) is the pressure that would be received at x if 

the source were not Isotropie, but rather emitted all its energy in the 

direction of the iLh unperturbed ray.  Thus P.(^ must satisfy the wave 

equation (4.1) but with an anisotropic boundary condition that itself 

depends on t     To make this more precise, let us define p.^) to be 

the pressure at ^ from a source at the origin that emits only within a 

small solid angle* around the direction of the ith unperturbed ray join- 

ing the origin to t.     Thus p. 6b = p. (^ , and furthennore ^^ 

vanishes unless y is inside the ith ray tube.  Then 

tV-> + k (y)]pi(^^) = V(^)p.(^^),    i = !...„(-)   #    (4 6) ■i I 

In analogy with this definition of p.^;^), we may also define an 

'unperturbed" Green's function A.^^,0), i = l...n(^), to satisfy 

Wf  + k2(y)UAy{x,0)   = 0 
(4.7) 

again with the same boundary condition.  This function, also, will vanish 
"* th 

except when y is near the i  unperturbed ray. 

We may now directly derive the analogue of Eq. (2.15) by computing 

the quantity log p. (^/A. (y;x,0) in perturbation theory, and using 

Eq. (4.2).  We ^ind, setting y = x, that 

; 

-* -> 
Pjx) = A. (x;x,0)e 

1      >. 

Mx;x,0) Ith      d3*ka,*')nx')bU',0) 
1       rl  ray tube 

(4.9) 
'.-*  r» 

We have here replaced A^x-.x.O) simply by A^x.O).  Equation (4.9) is 

evidently the generalization of the Rytov formula (2.15) to the situation 

of an inhomogeneous background and many rays.  The expression clearly 

18 
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fails   if   the  range   is   so   large  that   the   ray  tubes  overlap;   otherwise   the 

validity  conditions  are   the   same  as   those   in  the   homogeneous-background 

case. 

19 
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V FLUCTUATIONS IN AN INHOMOGENEOUS OCEAN 

In this section we shall use Eq. (4.9) to calculate the various 

averages of interest for the contribution of a single ray tube to the 

pressure in the presence of the sound channel.  We shall, for simplicity, 

drop the index i, though we should keep in mind that when there are 

several unperturbed raypaths their contributions are to be added to obtain 

the total pressure.  Our interest, then will be in the statistical fluc- 

tuations of the contributions of a single ray, or rather a single ray tube. 

As in the homogeneous case, we define 

;■£ 

X(x) = J- /dy A(x,y)V(y)A(y,0) 
A(x,0) J 

(5.1) 

and we wish to compute (x > and (|x| >.  We recall, from Section IV, that 

assuming geometrical optics to be a valid approximation for the nonfluc- 

tuating background permits us to write the Green's function as 

,-* -». 
A >-* _\  ^/~* ~\ ikS(xyy) A(x,y) = K(x,y)e (5.2) 

where 

v 

kS(x,y) = / d s k(x(s)) (5.3) 

and where the normalization factor is 

20 
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K(x,y) = -—■  4/det r   S(x,y) -» -> 
4it  ^    öxx  Byj,.        x^y^O 

Here, x refers to directions perpendicular to the ray.  (An excellent 

approximation to this, for our purposes, is to write simply K(x,y) = 

(4Tt|x-y|)  , as in the homogeneous-ocean case; we need to be careful 

about deviations from homogeneity only in the phases.)  In Eq. (5.3) 

the line integral is along the ray of interest joining the points x 

y   + v 
V(yi'y2)   S CK   "  V 

nV(   ^l2^         fc3Z K(x,Y)K(Y,0)    f 2->      _>-> (|X(x)|   )   =   Id Y  '— '—   Id  y C(y,Y) 

J K(x,0) J 

exp  i  k  [S(x,Y + y/2)   -  S(x,Y - y/2) 

->      -> ->      _» 

21 
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i and  y. 

To repeat our earlier calculations requires us to introduce the 

correlation function (VCy^VX^)).  In the homogeneous case, this quan- 

tity depended only on the separation y - y   Now, however, because of 

the background inhomogene ities, it will also depend on (y + y )/2 

(actually it will depend only on the mean depth (z + z )/2 since the 
X     t£ 

inhomogeneities depend only on depth).  Thus we must now define the 
I 

correlation function by 

i 

As before,   let us  look first  at   <|x|   >.     We  have 

+  S(Y + y/2,0)   - S(Y - y/2,0)] (5.4) 

I 
i 
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and  we  must   keep   in  mind   that  we   are   to  integrate  only over  the  ray  tube 

surrounding  the  unperturbed  ray  of   interest.      In  the  homogeneous-background 

case  we  expanded   the exponent   in  powers  of y,   because C(y')   vanished   for 

large   |y|.     We  may do  the   same   here.     Thus, 

(|x(x)|2)=/d
3?K(^yK^0) f^cCy 

J K(x,0)    * 
,Y) 

exp iky' V [S(x,Y) + S(Y,0)] (5.5) 

3_ 
The integral on d Y is again to be evaluated by stationary phase.  The 

stationary phase path is evidently the unperturbed ray joining the origin 

to the observation point x.  Hence, we may write 

. 
<|XrX)|2>=  (^j  /   ^y^q^s) C^Cs), Y(s)) ,   (5.6) 

in complete parallel to the homogeneous case. Here the line integral on 

ds is along the unperturbed ray, q^s) refers to the component of cf per- 

pendicular to the ray at s, Y(s) is a point on the ray at s, and 

e(q,Y) 5 
/• 

3-,     iq'y    -> -> 
y e C(y,Y) (5,7) 

Next  we   turn  to   <X  >; 

22 
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.    -.  2.            C    3-. K(x,Y)K(Y,0)     f    .3- „> -, 
<X(x)   )   =     /   d  Y  !-^ !—    /-   d y C(y,Y) 

y K(x,0) y 

exp  i i  k     S (x, Y + y/2)   +  S(x,Y -  y/2) 

+  S(Y +  y/2,0)   +  S(Y - y/2,0) 

2  S(x ,0)] (5.8) 

Now when we expand  \;he exponent   in powers  of y  the  linear  terms  vanish,   so 

that we have 

/   .-^2, C  3- K(x,Y)K(Y,0)     2ik(S(x,Y)+S(Y(0)-S(x, 
(X(x)   )   =       I d Y   e 

J K(x,0) 

0)) 

/ 
d y C(y,Y)  exp ik/4 y^ A    (Y) (5.9) 

where we define 

V?) =ä7:ör|s(x'Y) + S(Y' FsCx.Y)   +  S(Y,0)J (5,10) 

: 

3_. 
Evaluation of the integral on d Y by stationary phase again selects as the 

stationary phase path the unperturbed ray joining 0 to x.  The integral on 

d y can then be done by introducing the Fourier transform c(q,Y) as in 

Eq. (5,7).  Finally, we obtain 
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<X(x)   )   = 

.2 > x 

y/^yx (s) 

C(qx(s),   Y(s))e 
-  q. .(s)q, .(s)A     (YCs))^ . 

ij (5.11) 

The notation is as in Eq, (5.6), and the result is again in complete analogy 

to the homogeneous case. 

Most of the comments we made in Section III concerning the results in 

the homogeneous background apply here as well.  The expression for (|x| ) 

is again just that obtained in the geometrical optics approximation, but 
2 2 

that for (X ) is not.  Geometrical optics for (X ) is valid provided that 
i 

-i .- 
q. .(s)   q.    (s)   A     (Y(s)). .  «   1 

■Li 1J ij 
(5.12) 

This   is   the  analogue  of  the Fresnel  condition. 

that 

In the homogeneous case, this condition boiled down to the requirement 

x < k L 

In the presence of a sound channel, the restriction (5,12) on the range is 

less severe; the condition (5.12) reduces approximately to 

x    x tan 6 
 r +   « 1 

2       2 
k L     k L 

(5.13) 

where   tan 6  is the maximum ray  inclination to  the  horizontal.     Since L 

is  much  larger  than L  ,   and  since   tan 9  is  small,   this  restriction  is 

24 
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easier to meet than x/k Lv « 1. Thus, in the presence of a sound 

channel, geometrical optics should be valid to a greater range than 

would be   the  case  with  a  uniform background  sound  speed. 

■ 

. 

■ 
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VI  CONCLUSION 

We have presented relatively simple formulas for phase and amplitude 

fluctuations of pressure signals in the ocean in the presence of a speci- 

fied spectrum of sound-speed fluctuations for both a homogeneous ocean 

and one with a sound channel.  These formulas reduce to the geometrical 

optics approximation for short ranges, but for long ranges they give re- 

sults far less divergent with range than does geometrical optics. 

For the case of a sound channel, where there are in general many rays, 

our results apply to fluctuations in the contribution of a single ray to 

the received pressure; thus the approximation is limited to ranges at which 

rays are still separable.  Fluctuations in the total received pressure are 

much greater, due to interference between different rays, and are insensi- 

tive to details of the fluctuations in a single ray. 

The next step to be undertaken is to use the results outlined here, 

together with a semi-empirical fluctuation spectrum, to make numerical 

estimates of the fluctuations for the purpose of comparison with experi- 

ments.  This will be described elsewhere. 

■3 

m 
; 
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